Market Leading Wide Color Gamut, Narrow-Band Phosphors by GE **& Path Towards Enabling Next Generation Displays**

•

•

2023 Color Conversion MicroLED Association Webinar: March 6, 2023

KSF Phosphor Technology Licensing Global Presence K₂SiF₆:Mn⁴⁺ (PFS/KSF)

Narrow-band red emission centered at 631nm (5 peaks <2nm FWHM)

- License from GE <u>required</u> for use in display with LED source
- Enables wide color gamut excellent match to DCI-P3 & Rec2020 red
- On chip stability, RoHS compliant with high efficiency
- Continued small-size innovation for next-generation form factors
- GE and Current Lighting Solutions partner for the licensing, manufacturing, sales, and advancement of PFS/KSF TriGain(TM) Technology.

"It's no secret that this high-performing phosphor <u>has been a challenge for QDs to</u> <u>compete with</u>"

– Display Daily 2020

"KSF phosphor is the <u>unsung</u> <u>hero of WCG + HDR"</u> – Hendy Consulting, 2020 >60 Billion LEDs containing KSF sold into the display industry since 2014

19 Licensees

) Countries

4 All major display sectors (TV, laptop/monitor, tablet, mobile)

"Although there has been lots of talk about QD and OLEDs, there has been a real <u>revolution in</u> <u>phosphors</u>" – Display Daily 2020

"In just 3 years PFS has gained rapid acceptance in displays where it is now <u>the leading red material</u> for Wide Color Gamut (WCG) LCD BLUS" -Yole Report 2017

PFS/KSF is implemented across all display sectors

Samsung, Apple, Huawei, LG, BLU, Razer, Red, Nokia, Sonim

• Ultra-rugged

HP, Lenovo, Dell, Asus, Apple, Microsoft, Razer, MSI, Samsung, LC MSI, Samsung, LG

 2D backlit monitors/laptops Gaming Laptops: 300 Hz refresh rate

Apple, Samsung Lenovo, Huawei **Microsoft**, Asus

Samsung, LG, Sony, Vizio, TCL, Hisense, Toshiba, **Insignia, Sharp**

- FALD 4K HDR TVs
- DCI P3 > 96%

KSF commercialized in on-chip & remote film + miniled architectures

*Partial list - GE investigation - Not exhaustive

Evolution of KSF phosphor: commercialized in multiple form factors/architectures

Application	High Efficacy Lighting	WCG Display edge lit	WCG Display direct lit	WCG Display <i>micro-LED</i>	
Implementation	On LED (~3 mm)	On LED (~1 mm)	On mini-LED (~100 um) or remote film	On µLED with longer pathlength (inks)	On µLED with shorter pathlength (inks)
Commercial Status	Commercialized 2014	Commercialized 2014 (>60 billion LEDs)	Commercialized 2020	Sampling	In development
Product Example			Biue light ilumination		
Avg Particle Size	25-30 um	15-20 um	3-9 um	Sub-micron	Nano-KSF
Challenges	High flux & long product life	Only moderate flux & reliability specs. 😊	Cost (easy flux & reliability)	Absorbance (thicker film architectures)	Reliability & Absorbance
Microscopy	10 um	10 um	10 um	10 um	<u>200</u> nm 0.5 μm

Decreasing particle size to meet display industry needs

回線家回

ICDT 2021: GE'S LED Phosphors with GE Research's Jim Murphy - YouTube

Narrow Band Phosphor Innovation by GE

Successful commercialization for on-chip & miniLED remote films, working towards commercialization for microLED

		GE Phosphor Portfolio	Comments		
1		KSF for LED package ("on chip")	Commercialized since 2014 (>60 billion high brightness WCG LED packages)		
2		Small size KSF for films/minileds	Commercialized in tablets, monitors, laptops since 2021		
Under Development at GE Research: Sampling Customers					
3		KSF inks (color filter/microleds)	Providing submicron powder, inks & printed parts to select partners		
4		Alternate Mn ⁴⁺ Red	30% faster response time vs. KSF (full array local dimming/films), small size		
5)	Narrow Band Green Improved color gamut vs. B SiAlON			
6		High nit Eu ³⁺ red 618 nm peak emission for improved brightness: Lighting & Displays, 1.8 ms tau			
_		2 3	A 5 6		

4

Improved thermal properties & fast response

Available in small size

GE Research: Vertical Integration & Collaboration to Create the µLED Value Chain

GE LED Phosphors: Murphy MicroLED Association 2023

6

GE KSF Inks/Ink Jet Printing for microled color conversion

- R, G, B MicroLED architecture "red gap" issue vs. B microLED + color conversion
- pc-MicroLEDs: Potential for improved energy efficiency, color quality, contrast & form factor

- GE Patented technology enables small size, high absorption KSF
- Inks: Submicron particle size with high quantum efficiency
- Customer sampling is underway.
- Contact us to learn more: murphyj@ge.com

GE ink jet printing submicron KSF for microled displays

Video by Kevin Shoemaker

KSF narrow band red phosphor: Reliable, Bright & best color gamut

KSF phosphor can be an on chip solution because it has better reliability to air, humidity, temperature & blue flux.

KSF has better red color

KSF phosphor shows more narrow red emission than commercialized red QDs enabling higher quality red color (wider color gamut)

- KSF phosphor shows no self absorption & will not absorb green or red emission.
- InP QDs absorb blue well, but absorb throughout the visible, resulting in a decrease in EQE in thicker dense films, absorption of green emission & unintentional excitation from ambient room light.

KSF vs. InP QDs for MicroLED

KSF wider color gamut, better reliability & no self-absorption

KSF Phosphor Improvements in 2022:

- 1. Synthesis: smaller size, higher %Mn, minimizing defects to improve IQE & 450nm Absorbance.
- 2. Surface chemistry: reduced agglomeration/better dispersion.
- 3. Ink & film deposition/printing optimization

GE Patented technology enables small size, high absorption KSF

pc-µLED architectures with reduced cross talk, higher light conversion efficiency

(pc-µLED = phosphor converted micro-LED)

color conversion film + dielectric metamirror

Reflects blue (light trapping), transmits red to maximize light conversion efficiency in thinner color conversion films.

Ahmed K. Design of a Transparent Dielectric Metamirror for Micro LED Displays. J Soc Inf Display. 2021. US2020/0127169A1

funnel-tube array & reflective coating

- Enables thick phosphor layer with minimal color cross talk & improved efficiency
- Green phosphor may also be used to attain d65 color point

Gou F, Hsiang E-L, Tan G, Lan Y-F, Tsai C-Y, Wu S-T. High performance color-converted micro-LED displays. J Soc Inf Display. 2019

LSW improves color gamut with reduced cross talk

Onuma H et al. 1,053 ppi Full-color "silicon Display" based on Micro-LED Technology. 25-5. SID 2019 Digest

Architectures that use "thicker" color conversion layers, target d65 color point or recycle blue light will show most benefit in reliability, color gamut & brightness using KSF phosphor.

Examples of architectures using combination of down-converters

Properties that can be enhanced by combining down-converters Color Brightness Efficiency Uniformity Response time Cost Marketability

Example 6 – Narrow-band phosphors and QDs in harmony

Unique combination of down-converters including: KSF Red, Green Phosphor (on chip) QD red and green (remote part)

(ge)

Summary of Small Size <u>GE KSF</u> vs. QDs

Property	KSF phosphor	Red InP QD	
Color gamut	5 peaks <2nm each	FWHM >38nm commercially	
Quantum Efficiency	IQE > 90%, EQE >60%	EQE <40% [5]	
Reliability to air	No encapsulation necessary in commercial products	Encapsulation required	
Reliability to moisture	No encapsulation necessary in commercial products	Encapsulation required	
high temperature quenching	no loss at 100 °C	>15% loss at 100 °C	
High temp. curing degradation	<2% at 150 °C for 30 min.	>15% at 80 °C for 20 min. [6]	
Reliability to high blue flux	Commercialized on-chip	Not on-chip in displays	
Self-absorption loss	No	Yes, all QD colors	
Scatterance	RI = 1.4 so provides some scattering at typical sizes	Must add scattering agent	
Photoluminescence decay time	LCD like response time	Faster in microLED with no LCD	
Absorption	Requires >2x QD thickness	Higher abs. coefficient	

• Architectures that use "thicker" color conversion films will show most benefit in reliability, color gamut & brightness with KSF vs. QD films

• Potential for hybrid KSF + QD form factors

Murphy J et al. "Narrow-Band Phosphors for Next Generation MiniLED and MicroLED Displays" SID Display Week Digest of Technical Papers, 2021; (62-6) (2021)

Questions? Collaboration Interest?

- For technical inquiries please contact James Murphy: murphyj@ge.com
- For licensing inquiries contact Rachel Cassidy: rachel.cassidy1@ge.com

Thank you for your attention & look for us at SID in May!

Exemplary Patent Assets involving PFS/KSF phosphor family

US7358542, US7453195, US7497973, US7648649, US7847309, & other issued and pending patents worldwide

Summary

- KSF is the leading wide color gamut red emitting phosphor
- GE Licenses KSF phosphor for display applications
- GE Research's focus on innovation includes:
 - 1. Narrow band green phosphor development
 - 2. Small size KSF for films & direct lit/MiniLED market
 - 3. Submicron KSF inks/films & printing for MicroLED market
 - 4. Alternative GE Red Phosphor for fast response time

KSF Color Conversion in Direct lit/Miniled Backlights: 3 Architectures

Display Size Diversity requires LED size diversity which requires phosphor size diversity

Air stability and great blue flux & thermal reliability

- high contrast ratioKSE remote parts no
- KSF remote parts now commercialized.

<u>Widest Color Gamut Solution</u> Hybrid GE KSF "Magenta" LED + QD film Green CdSe QDs = 25nm FWHM Green Perovskite QDs < 25nm FWHM

KSF + green QD = Rec. 2020 > 91%

The color gamut of KSF on blue LEDs + perovskite QD backlight reached 95% BT.2020¹

Products expected in 2021

• <u>1. Honglei Ji et al., SID Digest 2019, p. 1064</u>

- <u>https://nanolumi.com/2020/news/green-perovskite-for-professional-monitors/</u>
- https://www.displaydaily.com/article/display-daily/qd-materials-are-set-for-high-growth-here-s-why

GE Narrow Band Green Phosphors

-GE is developing narrow band green phosphors to enable on chip or remote part wider color gamut displays.

- -Enables 100% DCI-P3 and Adobe
- -Absorbance is equivalent or higher than B-Sialon

-Good reliability: 100% HTHH (high temp./humidity) stability

-No loss in efficiency when incorporated into films

-Customer Sampling is underway.

material	QE	Dominant	PL decay (µs)	
B-Sialon	100	556	2	
QD	<70	540	(ns)	
GE Comp 1	95	549	90	
GE Comp 2	100	547	85	
GE Comp 3	100	531	520	

GE's new narrow band greens can hit all requirements for next generation displays

GE Alternative Red Phosphor in Development

- Emission shift towards higher energy vs. KSF is ideal for lighting applications.
- Photoluminescent decay time is about four times faster than KSF for fast response time displays.
- Absorbs more strongly than KSF.
- Blending with KSF for display: Tradeoff of improved response time and less phosphor loading for color gamut.
- Optimization in progress.
- Customer sampling in Q3 2022.

Structures Requiring A Display License to GE PFS/KSF Patents

with LED or miniLED array

Magenta LED Package for Display – PFS/KSF remains in LED package